World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Feb 12th

During this period, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Brief ReportFree Access

Nanocarrier-Based Biological Fluorescent Probes for Simultaneous Detection of Ketamine and Amphetamine in Latent Fingermarks

    Nanocarrier-based biological fluorescent probes for ketamine and amphetamine have been prepared by conjugating red and green fluorescent nanoparticles (150-nm-sized) with anti-ketamine and anti-amphetamine antibodies, respectively, with the assistance of carbodiimide/N-hydroxysuccinimide. Biological fluorescent probes for ketamine and amphetamine could simultaneously detect these two drugs within a single fingermark by one-step test. Nanoparticles as carrier played dual-functional roles for not only fingermark visualization but also drug recognition. Latent fingermarks were visualized by the fluorescence signal generated from nanoparticles. The developed fingermarks clearly revealed ridge pattern and sufficient minutiae for individual identification. Ketamine and amphetamine were recognized by simply observing the colors of fluorescent images when the fingermark was checked in red and green channels. Detection limit of ketamine or amphetamine was 50ng in fingermark. This work therefore provides a novel nanocarrier-based strategy of drug detection as well as personal identification with high selectivity, low background interference and fast testing, which can be further broadened to other drugs and molecules.


    • 1. H. Faulds, Nature 22, 605 (1880). CrossrefGoogle Scholar
    • 2. B. von Hofsten, Nature 173, 449 (1954). CrossrefGoogle Scholar
    • 3. P. Hazarika and D. A. Russell, Angew. Chem., Int. Ed. 51, 3524 (2012). CrossrefGoogle Scholar
    • 4. Y. Zhong, Q. Chen, J. J. Li, X. H. Pan, Z. W. Han and W. Dong, Nano 12, 1750135 (2017). LinkGoogle Scholar
    • 5. Y. F. Gao, Y. H. Feng, L. Zhou, L. Petti, Z. Wang, J. Zhou, S. S. Xie, J. Chen and Y. P. Qing, Nano 13, 1850001 (2018). LinkGoogle Scholar
    • 6. R. Leggett, E. E. Lee-Smith, S. M. Jickells and D. A. Russell, Angew. Chem., Int. Ed. 46, 4100 (2007). CrossrefGoogle Scholar
    • 7. V. Drapel, A. Becue, C. Champod and P. Margot, Forensic Sci. Int. 184, 47 (2009). CrossrefGoogle Scholar
    • 8. J. Wang, T. Wei, X. Y. Li, B. H. Zhang, J. X. Wang, C. Huang and Q. Yuan, Angew. Chem., Int. Ed. 53, 1616 (2014). CrossrefGoogle Scholar
    • 9. Y. He, L. Xu, Y. Zhu, Q. Wei, M. Zhang and B. Su, Angew. Chem., Int. Ed. 53, 12609 (2014). Google Scholar
    • 10. W. Song, Z. Mao, X. Liu, Y. Lu, Z. Li, B. Zhao and L. Lu, Nanoscale 4, 2333 (2012). CrossrefGoogle Scholar
    • 11. P. Hazarika, S. M. Jickells, K. Wolff and D. A. Russell, Angew. Chem., Int. Ed. 47, 10167 (2008). CrossrefGoogle Scholar
    • 12. P. Hazarika, S. M. Jickells and D. A. Russell, Analyst 134, 93 (2009). CrossrefGoogle Scholar
    • 13. P. Hazarika, S. M. Jickells, K. Wolff and D. A. Russell, Anal. Chem. 82, 9150 (2010). CrossrefGoogle Scholar
    • 14. W. J. Kim, C. A. Kim and S. Kim, Polym. Bull. 75, 1505 (2018). CrossrefGoogle Scholar
    • 15. L. W. Zhu, W. Yang, Y. Ou, L. S. Wan and Z. K. Xu, Polym. Chem. (UK) 5, 3666 (2014). CrossrefGoogle Scholar
    • 16. B. Liao, Y. H. Huang, M. C. Cheng and G. M. Cong, Polym. Bull. 36, 79 (1996). CrossrefGoogle Scholar
    • 17. L. Angiolini, D. Caretti, L. Mazzocchetti, E. Salatelli, R. Willem and M. Biesemans, J. Polym. Sci. A, Polym. Chem. 42, 5372 (2004). CrossrefGoogle Scholar
    • 18. R. Mohammad-Rezaei, B. Massoumi, M. Abbasian and M. Jaymand, J. Polym. Res. 25, 93 (2018). CrossrefGoogle Scholar
    • 19. L. J. Feng, J. J. Wang, S. C. Liu, X. D. Sun, X. Z. Yuan and S. G. Wang, Environ. Pollut. 238, 859 (2018). CrossrefGoogle Scholar
    • 20. K. Li, W. W. Qin, F. Li, X. C. Zhao, B. W. Jiang, K. Wang, S. H. Deng, C. H. Fan and D. Li, Angew. Chem., Int. Ed. 52, 11542 (2013). CrossrefGoogle Scholar
    • 21. L. S. Jang and H. K. Keng, Biomed. Microdevices 10, 203 (2008). Crossref, ISIGoogle Scholar
    • 22. M. L. Jennings and J. S. Nicknish, J. Biol. Chem. 260, 5472 (1985). Google Scholar
    • 23. S. Moret, A. Becue and C. Champod, Nanotechnology 25, 425502 (2014). CrossrefGoogle Scholar
    Published: 20 February 2019