World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Feb 12th

During this period, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Role of Water for Life

    The behavior of benzoic acid in polyethylene inspired me to reflect on why water is a unique molecule that all living organisms depend upon. From properties of DNA in aqueous solution a seemingly counter-intuitive conjecture emerges: water is needed for the creation of certain dry low-dielectric nm-size environments where hydrogen bonding exerts strong recognition power. Such environments seem to be functionally crucial, and their interactions with other hydrophobic environments, or with hydrophobic agents that modulate the chemical potential of water, can cause structural transformations via ‘hydrophobic catalysis’. Possibly combined with an excluded volume osmosis effect (EVO), hydrophobic catalysis may have important biological roles, e.g., in genetic recombination. Hydrophobic agents are found to strongly accelerate spontaneous DNA strand exchange as well as certain other DNA rearrangement reactions. It is hypothesized that hydrophobic catalysis be involved in gene recognition and gene recombination mediated by bacterial RecA (one of the oldest proteins we know of) as well as in sexual recombination in higher organisms, by Rad51. Hydrophobically catalyzed unstacking fluctuations of DNA bases can favor elongated conformations, such as the recently proposed Σ-DNA, with potential regulatory roles. That living cells can survive as dormant spores, with very low water content and in principle as such travel far in space is reflected upon: a random walk model with solar photon pressure as driving force indicates our life on earth could not have originated outside our galaxy but possibly from many solar systems within it — at some place, though, where there was plenty of liquid water.

    Opening keynote speech at the Second Nordic Organ on a Chip and Micro Physiological Symposium in Oslo, 12 February 2019. With dedication to Erik W. Thulstrup, a pioneer of stretched sheet polarized spectroscopy.

    References

    • 1. Langmuir, I. & Waugh, D.F. The adsorption of proteins at oil-water interfaces and artificial protein-lipoid membranes. J. Gen. Physiol. 21, 745–755 (1938). CrossrefGoogle Scholar
    • 2. Langmuir, I. Overturning and anchoring of monolayers. Science 87, 493–500 (1938). CrossrefGoogle Scholar
    • 3. Kauzmann, W. Some forces in the interpretation of protein denaturation. Adv. Prot. Chem. 14, 1–63 (1959). CrossrefGoogle Scholar
    • 4. Stillinger, F.H. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solution Chem. 2, 141 (1973). CrossrefGoogle Scholar
    • 5. Parsegian, V.A., Rand, R.P. & Rau, D.C. Osmotic stress, crowding, preferential hydration and binding: a comparison of perspectives. Proc. Natl. Acad. Sci. USA 97, 3987–3992 (2000). CrossrefGoogle Scholar
    • 6. Dill, K.A. & MacCallum, J.L. The protein folding problem, 50 years on. Science 338, 1042–1046 (2012). https://doi.org/10.1126/science.1219021. CrossrefGoogle Scholar
    • 7. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005). https://doi.org/10.1038/nature04162.PMID16193038. CrossrefGoogle Scholar
    • 8. Lum, K., Chandler, D. & Weeks, J.D. Hydrophobicity at small and large length scales. J. Phys. Chem. B. 103, 4570–4577 (1999). CrossrefGoogle Scholar
    • 9. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008). CrossrefGoogle Scholar
    • 10. Matsushita-Ishiodori, Y., Hanczyc, M.M., Wang, A., Szostak, J.W. & Yomo, T. Using imaging flow cytometry to quantify and optimize giant vesicle production by water-in-oil emulsion transfer methods. Langmuir 35, 2375–2382 (2019). https://doi.org/10.1021/acs.langmuir.8b03635 Publication Date (Web): January 15, 2019 CrossrefGoogle Scholar
    • 11. Adamala, K. & Szostak, J.W. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 5, 495–501 (2013). https://doi.org/10.1038/nchem.1650. CrossrefGoogle Scholar
    • 12. Thulstrup, E.W., Michl, J. & Eggers, J.H. Polarization spectra in stretched polymer sheets. II. Separation of pi->pi* absorption of symmetrical molecules into components. J. Phys. Chem. 74, 3868–3878 (1970). CrossrefGoogle Scholar
    • 13. Nordén, B. Applications of linear dichroism spectroscopy. Appl. Spectrosc. Rev. 14, 157–248 (1978). CrossrefGoogle Scholar
    • 14. Nordén, B. General aspects on linear dichroism spectroscopy and its application. Proceedings of the Nobel Workshop in Lund, October 25–27, 1976 on Molecular Optical Dichroism and Chemical Applications of Polarized Spectroscopy. Spectrosc. Lett. 10, 381–400 (1977). CrossrefGoogle Scholar
    • 15. Starikow, E.B. & Nordén, B. Enthalpy-entropy compensation: a phantom or something useful? J. Phys. Chem. 111, 14431–14435 (2007). CrossrefGoogle Scholar
    • 16. Starikov, E.B. & Nordén, B. Entropy-enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chem. Phys. Lett. 538, 118–120 (2007). CrossrefGoogle Scholar
    • 17. Watson, J.D. & Crick, F.H.C. Molecular structure of nucleic acid. Nature 171, 737–738 (1953). CrossrefGoogle Scholar
    • 18. Donohue, J. The third bond. Proc. Natl. Acad. Sci. USA 42, 60–65 (1956). CrossrefGoogle Scholar
    • 19. Wain-Hobson, S. The third Bond. Nature 439, 539 (2006). CrossrefGoogle Scholar
    • 20. Nordén, B., Elvingson, C., Kubista, M., Sjöberg, B., Ryberg, H., Ryberg, M., Mortensen, K. & Takahashi, M. Structure of RecA-DNA complexes studied by combination of linear dichroism and small angle neutron scattering measurements in flow-oriented samples. J. Mol. Biol. 226, 1175–1192 (1992). CrossrefGoogle Scholar
    • 21. Takahashi, M., Kubista, M. & Nordén, B. Linear dichroism study of RecA-DNA complexes: structural evidence and binding stoichiometries. J. Biol. Chem. 292, 8109–8111 (1987). Google Scholar
    • 22. Takahashi, M., Kubista, M. & Nordén, B. Binding stoichiometry and structure of RecA-DNA complexes studied by flow linear dichroism and fluorescence spectroscopy: evidence for multiple heterogeneous-DNA coordination. J. Mol. Biol. 205, 137–147 (1989). CrossrefGoogle Scholar
    • 23. Nordén, B., Elvingson, C., Eriksson, T., Kubista, M., Sjöberg, B., Takahashi, M. & Mortensen, K. Structure of a RecA-DNA complex from linear dichroism and small-angle neutron-scattering in flow-oriented solution. J. Mol. Biol. 216, 223–228 (1990). CrossrefGoogle Scholar
    • 24. Takahashi, M. & Nordén, B. Structure of RecA-DNA complexes and mechanism of DNA strand exchange reaction in homologous recombination. Adv. Biophys. 30, 1–35 (1994). CrossrefGoogle Scholar
    • 25. Nordén, B., Wittung-Stafshede, P., Ellouze, C., Kim, H.-K., Mortensen, K. & Takahashi, M. Base orientation of second DNA in RecA•DNA fi laments: analysis by combination of linear dichroism and small angle neutron scattering in flow- oriented solution. J. Biol. Chem. 273, 15682–15686 (1998). CrossrefGoogle Scholar
    • 26. Bosaeus, N., Reymer, A., Beke-Somfai, T., Brown, T., Takahashi, M. & Wittung-Stafshede, P. A stretched conformation of DNA with a biological role? Quart. Rev. Biophys. 50, e11 (2017). CrossrefGoogle Scholar
    • 27. Hagmar, P., Norden, B., Baty, D., Chartier, M., Takahashi, M., Nordén, B., Baty, D., Chartier, M. & Takahashi, M. Structure of DNA-RecA complexes studied by residue differential linear dichroism and fluorescence spectroscopy for a genetically engineered RecA protein. Journal of Molecular Biology 226, 1193–1205 (1992). CrossrefGoogle Scholar
    • 28. Morimatsu, K., Takahashi, M. & Nordén, B. Arrangement of RecA protein in its active filament determined by polarized-light spectroscopy. Proc. Natl. Acad. Sci. USA 99, 11688–11693 (2002). CrossrefGoogle Scholar
    • 29. Story, R.M.M., Weber, I.T.T. & Steitz, T.A.T.A.A. The structure of the E. coli RecA protein monomer and polymer. Nature 355, 318–325 (1992). CrossrefGoogle Scholar
    • 30. Chen, Z., Yang, H. & Pavletich, N.P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489–494 (2008). CrossrefGoogle Scholar
    • 31. Reymer, A., Frykholm, K., Morimatsu, K., Takahashi, M. & Nordén, B. Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy. Proc. Natl. Acad. Sci. 106, 13248–13253 (2009). CrossrefGoogle Scholar
    • 32. Feng, B., Frykholm, K., Nordén, B. & Westerlund, F. DNA strand exchange catalyzed by molecular crowding in PEG solutions. Chem. Commun. 46, 8231–8233 (2010). CrossrefGoogle Scholar
    • 33. Feng, B., Westerlund, F. & Nordén, B. Evidence for hydrophobic catalysis of DNA strand exchange. Chem. Comm. 34, 7390–7392 (2015). CrossrefGoogle Scholar
    • 34. Westerlund, F., Nordell P., Norden B. & Lincoln, P. Kinetic characterization of an extremely slow DNA binding equilibrium. J. Phys. Chem. 111, 9132–9137 (2007). CrossrefGoogle Scholar
    • 35. Nordell, P., Westerlund, F., Wilhelmsson, L.M., Nordén, B. & Lincoln, P. Kinetic recognition of ATRich DNA by ruthenium complexes. Angew. Chem. Int. 46, 2203–2206 (2007). CrossrefGoogle Scholar
    • 36. Nordell, P., Westerlund, F., Reymer, A., El-Sagheer, A.H., Brown, T., Norden, B. & Lincoln, P. DNA polymorphism as an origin of adenine-thymine tract length-dependent threading intercalation rate. J. Am. Chem. Soc. 130, 14651–14658. CrossrefGoogle Scholar
    • 37. Boer, D.R., Wu, L., Lincoln, P. & Coll, M. Thread insertion of a bis(dipyridophenazine) diruthenium complex into the DNA double helix by the extrusion of AT base pairs and cross-linking of DNA duplexes. Angew. Chem. 126, 1980–1983 (2014). CrossrefGoogle Scholar
    • 38. Asakura, Sho & Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33, 183–192 (1958). CrossrefGoogle Scholar
    • 39. Frank-Kamenetskii, M.D. & Prakash, S. Fluctuations in the DNA double helix: a critical review. Phys. Life Rev. 11, 153–170 (2014). https://doi.org/10.1016/j.plrev.2014.01.005. Epub 2014. CrossrefGoogle Scholar
    • 40. Phelps, C., Lee, W., Jose, D., von Hippel, P.H. & Marcus, A.H. Single molecule FRET and linear dichroism studies of DNA breathing and helicase binding at replication fork junctions. Proc. Natl. Acad. Sci. USA 110, 17320–17325 (2013). CrossrefGoogle Scholar
    • 41. Von Hippel, P.H., Johnson, N.P. & Marcus, A.H. 50 years of DNA ‘breathing’: reflections on old and new approaches. Biopolymers 99, 923–954 (2013). Google Scholar
    • 42. McConnel, B. & von Hippel, P.H. Hydrogen exchange as a probe of the dynamic structure of DNA. I. General acid-base catalysis. J. Mol. Biol. 14, 297–316 (1970). CrossrefGoogle Scholar
    • 43. Bosaeus, N., El-Sagheer, A.H., Brown, T., Smith, S.B., Akerman, B., Bustamante, C. & Norden, B. Tension induces a base-paired overstretched DNA conformation. Proc. Natl. Acad. Sci. USA 109, 15179–15184 (2012). CrossrefGoogle Scholar
    • 44. Bosaeus, N., El-Sagheer, A.H., Brown, T., Åkerman, B. & Nordén, B. Force-induced melting of DNA — evidence for peeling and internal melting from force spectra on short synthetic duplex sequences. Nucleic Acids Res. 42, 8083–8091 (2014). CrossrefGoogle Scholar
    • 45. Kool, E.T.T. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 30, 1–22 (2001). CrossrefGoogle Scholar
    • 46. Koonin, E.V.V. & Novozhilov, A.S.S. Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61, 99–111 (2009). CrossrefGoogle Scholar
    • 47. Lagerkvist, U. ‘Two out of three’: an alternative method for codon reading. Proc. Natl. Acad. Sci. USA 75, 1759–1762 (1978). CrossrefGoogle Scholar
    • 48. Thorén, P.E.G., Persson, D., Karlsson, M. & Nordén, B. The antennapedia penetratin peptide translocates across lipid bilayers: the first direct observation. FEBS Lett. 482, 265–268 (2000). CrossrefGoogle Scholar
    • 49. Mason, P.E., Neilson, G.W., Dempsey, C.E., Barnes, A.C. & Cruickshank, J.M. The hydration structure of guanidinium and thiocyanate ions: implications for protein stability in aqueous solution. Proc. Natl. Acad. Sci. USA 100, 4557–4561 (2003). CrossrefGoogle Scholar
    • 50. Rydberg, H., Matson, M., Å mand, H. & Nordén, B. Effects of Tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry 51, 5531–5539 (2012). CrossrefGoogle Scholar
    • 51. Ardhammar, M., Lincoln, P. & Nordén, B. Invisible liposomes: refractive index matching with sucrose enables flow dichroism assessment of peptide orientation in lipid vesicle membranes. Proc. Natl. Acad. Sci. USA 99, 15313–15317 (2002). CrossrefGoogle Scholar
    • 52. Esbjörner, E.K., Lincoln, P. & Nordén, B. Counterion- mediated membrane penetration: cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids. Biochim. Biophys. Acta 1768, 1550–1558 (2007). CrossrefGoogle Scholar
    • 53. Beke-Somfai, T., Feng, B. & Nordén, B. Energy phase shift as mechanism for catalysis. Chem. Phys. Lett. 535, 169–172 (2012). CrossrefGoogle Scholar
    • 54. Takahashi, M. & Nordén, B. The cofactor ATP in DNA-RecA complexes is not intercalated between DNA bases. J. Mol. Recog. 7, 221–226 (1994). CrossrefGoogle Scholar
    • 55. Florian, J. & Warshel, A. Calculations of hydration entropies of hydrophobic, polar and ionic solutes in the framework of the Langevin dipoles solvation model. J. Phys. Chem. 103, 10282–10288 (1999). CrossrefGoogle Scholar
    • 56. Singh, N. & Warshel, A. A comprehensive examination of the contributions to the binding entropy of protein–ligand complexes. Proteins 78, 1724–1735 (2010). Google Scholar
    • 57. Yoon, H., Kolev, V. & Warshel, A. Validating the water flooding approach by comparing it to grand canonical Monte Carlo simulations. J. Phys. Chem. B. 121, 9358–9365 (2017). CrossrefGoogle Scholar
    • 58. El Hage, K., Hedin, F., Gupta, P.K., Meuwly, M. & Karplus, M. Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size. eLife 7, e35560 (2018). https://doi.org/10.7554/eLife.35560. CrossrefGoogle Scholar
    • 59. Amaro, R.A., Baudry, J., Chodera, J., Demir, Ö., McCammon, J.A., Miao, Y. & Smith, J.C. Ensemble docking in drug discovery. Biophys. J. 114, 2271–2278 (2018). CrossrefGoogle Scholar
    • 60. Hobza, P. Calculations on noncovalent interactions and databases of benchmark interaction energies. Acc. Chem. Res. 45, 663–672 (2012). CrossrefGoogle Scholar
    • 61. Cooper, V.R., Thonhauser, T., Puzder, A., Schröder, E., Lundqvist, B.I. & Langreth, D.C. Stacking interactions and the twist of DNA. J. Am. Chem. Soc. 130, 1304–1308 (2008). CrossrefGoogle Scholar
    • 62. Sturm, A., Perczel, A., Ivics, Z. & Vellai, T. The Piwi-piRNA pathway: road to immortality. Aging Cell 16, 1–6 (2017). CrossrefGoogle Scholar
    • 63. Dobson, J.F. & Gould, T. Calculation of dispersion forces. J. Phys. Condens. Matter 24, 40–50 (2012). CrossrefGoogle Scholar
    • 64. Giudic, E., Varnai, P. & Lavery, R. Base-pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res. 31, 1434–1443 (2003). CrossrefGoogle Scholar
    • 65. Chapman, C.D., Gorczyca, S. & Robertson-Anderson, R.M. Crowding induces complex ergodic diffusion and dynamic elongation of large DNA molecules. Biophys. J. 108, 1220–1228 (2015). CrossrefGoogle Scholar
    • 66. Marcus, R.A. Micelle-enhanced dissociation of a Ru cation/DNA complex. J. Phys. Chem. B. 109, 21419–21424 (2005). https://doi.org/10.1021/jp051988s. CrossrefGoogle Scholar
    • 67. Rebek, J. Hydrogen-Bonded Capsules: Molecular Behavior in Small Spaces. World Scientific — London 2016. Google Scholar
    • 68. Jiang, W., Tiefenbacher, K., Ajami, D. & Rebek, J. Complexes within complexes: hydrogen bonding in capsules. J. Chem. Sci. 3, 3022–302 (2012). CrossrefGoogle Scholar
    • 69. Ho, J.C.S., Rangamani, P., Liedberg, B. & Parikh, A.N. Mixing water, transducing energy, and shaping membranes: autonomously self-regulating giant vesicles. Langmuir 32, 2151–2163 (2016). CrossrefGoogle Scholar
    • 70. Oglecka, K., Rangamani, P., Liedberg, B., Kraut, R.S. & Parikh, A.N. Oscillatory phase separation in giant lipid vesicles induced by trans-membrane osmotic differentials. eLife 3, e03695 (2014). https://doi.org/10.7554/eLife.03695. CrossrefGoogle Scholar
    • 71. Sunde, E.P., Stelow, P., Hederstedt, L. & Halle, B. The physical state of water in bacterial spores. Proc. Natl. Acad. Sci. USA 106, 19334–19339 (2009). https://doi.org/10.1073/pnas.0908712106. CrossrefGoogle Scholar
    • 72. Horneck, G., Klaus, D.M. & Mancinelli, R.L. Space microbiology. Microbiol. Mol. Biol. Rev. 74, 121–156 (2010). https://doi.org/10.1128/MMBR.00016-09. CrossrefGoogle Scholar
    Published: 26 February 2019

    Remember to check out the Most Cited Articles in MFJ !

    Check out our Popular Science books

    Featuring all-time bestsellers and new releases